
Conjure Revisited:
Towards Automated Constraint Modelling

Ozgur Akgun1, Alan M. Frisch2, Brahim Hnich3, Chris Jefferson1, Ian Miguel1

1School of Computer Science, University of St Andrews, UK
2Artificial Intelligence Group, Dept. of Computer Science, University of York, UK

3Department of Computer Engineering, Izmir University of Economics, Turkey

Abstract. Automating the constraint modelling process is one of the
key challenges facing the constraints field, and one of the principal ob-
stacles preventing widespread adoption of constraint solving. This paper
focuses on the refinement-based approach to automated modelling, where
a user specifies a problem in an abstract constraint specification language
and it is then automatically refined into a constraint model. In particu-
lar, we revisit the Conjure system that first appeared in prototype form
in 2005 and present a new implementation with a much greater coverage
of the specification language Essence.

1 Introduction

Automating the constraint modelling process (the modelling bottleneck) is one
of the key challenges facing the constraints field [16], and one of the principal
obstacles preventing widespread adoption of constraint solving. Without help,
it is very difficult for a novice user to formulate an effective (or even correct)
model of a given problem. This challenge has received a considerable amount
of attention in the literature recently, where a variety of approaches have been
taken to automate aspects of constraint modelling, including: machine learning
[1]; case-based reasoning [10]; theorem proving [2]; automated transformation
of medium-level solver-independent constraint models [17, 15, 20, 13]; and refine-
ment of abstract constraint specifications [4] in languages such as ESRA [3],
Essence [5], F [7] or Zinc [11].

The refinement-based approach is the focus of this paper. The central idea is
to allow a user to write abstract constraint specifications that describe a prob-
lem above the level at which modelling decisions are made. Abstract constraint
specification languages, such as Essence or Zinc support abstract decision vari-
ables with types such as set, multiset, function, and relation, as well as nested
types, such as set of sets, multiset of function variables, and so on. Problems
can typically be specified very concisely in this way, as demonstrated by the
example in Figure 1. However, since existing constraint solvers do not support
these abstract decision variables directly, abstract constraint specifications must
be refined into concrete constraint models.

The Conjure system was introduced in prototype form by Frisch et al. [4]. It
was able to refine a fragment of Essence limited to nested set and multiset based

given item_count,capacity : int

letting item be domain int(1..item_count)

given volume,value : function (total) item -> int(1..)

find x : set of item

maximising sum i elem x . value(i)

such that (sum i elem x . volume(i)) <= capacity

Fig. 1. The knapsack problem, given in Essence

decision variables into models in the Essence′ solver-independent modelling
language. This work was further developed by Frisch and Martinez-Hernandez
[12], who looked in depth at the issues involved in channeling efficiently between
many different representations of high-level variables.

This paper describes a new approach to the implementation of Conjure,
with a much greater coverage of the Essence language and fewer limitations on
the rewrite rules such as the requirement of the IJCAI prototype to flatten an
Essence specification before applying the rewrite rules.

2 Background

Essence is a language for specifying combinatorial (decision or optimisation)
problems (for a detailed description see [5]). It is motivated by a desire to allow
users to write down problems without making constraint modelling decisions. To
this end, it has a high level of abstraction, supporting decision variables whose
types match the combinatorial objects problems typically ask us to find, such as:
sets, multisets, functions, relations and partitions. The key advance represented
by the language is its support for the nesting of these types, allowing decision
variables of type set of sets, multiset of sets of functions etc. Hence, problems
such as the Social Golfers Problem [6], which is naturally conceived of as finding
a set of partitions of golfers subject to some constraints, can be specified directly
without the need to model the sets or partitions as matrices.

Concomitant with the decision to support abstract constraint specifications
is the requirement to transform these specifications into constraint models. To-
day’s constraint solvers typically support decision variables with atomic types,
such as integer or Boolean, have limited support for more complex types like sets
or multisets, and no support for nested complex types. Hence, abstract specifica-
tions must be refined into constraint models suitable for constraint solvers. This
is achieved by modelling abstract decision variables as constrained collections of
variables of more primitive type.

The Conjure system, first presented in prototype form in [4], employs a
system of rewrite rules to refine Essence specifications into constraint models
in Essence′ [17], a language derived from Essence mainly by removing facilities
for abstraction and adding facilities common to existing constraint solvers and
toolkits. From Essence′ a tool such as Tailor [17] can be used to translate the

model into the format required for a particular constraint solver. The new version
of Conjure presented herein operates in the same way. One could envisage an
alternative mode of operation where the user writes abstract specifications, which
are then refined and solved, and then the solution(s) are mapped back to the
abstract level. This is the subject of future research.

There are typically many constraint models for a given abstract specifica-
tion. Conjure is intended to generate these alternatives by providing multiple
refinement rules for each abstract type, corresponding to the various ways in
which a decision variable of that type can be modelled. Furthermore, for each
way of modelling the decision variables there can be multiple rules to generate
alternative models for a constraint on those variables. Consequently Conjure
often generates a large set of alternative models for an input specification. At
this stage our focus is on generating as large a set of model as possible. In future,
we will investigate restricting this set to good models and the selection of either
one recommended model or a portfolio of models with complementary strengths.

The previous Conjure prototype provided alternative rules for the refine-
ment of arbitrarily-nested sets and multisets. The new implementation presented
in this paper extends these rules to cover relations and functions. The remainder
of this paper describes the new implementation of Conjure, first by describ-
ing its architecture and then turning attention to its refinement rules and its
implementation.

3 The Architecture of Conjure

Conjure is a compiler-like system. Like most compilers it has a pipeline, which
starts with parsing, validating the input, and type-checking. After these founda-
tion phases, it prepares the input specification for rewriting, performs rewriting,
and does some housekeeping. The pipeline is summarised below:

1. Parsing
2. Validating the input

- (all the identifiers are defined in the declarations part)
- (properties of declarations. ex: a function cannot be declared both total

and partial.)
3. Type checking the input
4. Representations phase
5. Auto-Channelling phase
6. Adding structural constraints
7. Expression rewriting
8. Fixing auxiliary and quantified variable names

Phases 1–3 are the foundation phases. The representations, auto-channelling,
and adding structural constraint phases (4–6) prepare the input specification for
the actual task of rewriting (Phase 7). Phase 8 can be viewed as housekeeping:
it makes the output models easier to read and understand. Phase 7 (expression
rewriting) is described in detail in the following sections. There follow brief
descriptions for the three preparatory phases preceding it.

Representation There are two fundamental decisions to be made in formu-
lating a constraint model. The first is as to the viewpoint (the choice of
decision variables and their domains [9]), and the second is the choice of
constraints on those decision variables. The Conjure prototype interleaved
these two decisions in a constraint-wise refinement process [4]. By contrast,
the version of Conjure described herein explores all possible viewpoints
first before constraint refinement. This phase takes an Essence specifica-
tion and generates a set of specifications, one per possible combination of
variable representation decisions.
If a variable appears in more than one constraint, it is possible for that
variable to be represented in different ways in different constraints, in case
the most efficient way of representing a complex decision variable differs
among the constraints it appears in. If a variable is represented in more
than one way in a specification, channelling constraints between the two (or
more) representations are added automatically in Phase 5.

Auto-Channelling If we choose more than one way of representing a com-
binatorial object within a specification, we automatically add channelling
constraints [12] between different representations of the same variable in
this phase to maintain consistency.

Adding structural constraints In this phase we add all necessary structural
constraints for every decision variable in the specification. The structural
constraint for a representation of a decision variable makes sure the selected
representation actually represents a valid combinatorial object with the in-
tended properties (e.g. ensuring that the elements of a set are distinct). We
add these constraints before rewriting because they will be added regardless
of the rest of the specification and they only depend on the representation
of a combinatorial object.

4 Non-deterministic Rewriting

We employ a term rewriting system to refine Essence specifications into the
target language Essence′. Generally, rewrite rules can be thought of as partial
functions, which map from a subterm to an equivalent subterm [14]. Given a set
of rewrite rules and a term, a rewrite system repeatedly applies the rules until
no further rules can be applied. The term is then said to be in normal form.

In order to produce alternative models we wish to generate not a single
normal-form term, but all normal-form terms attainable by applying the given
rules to the input term. Hence, we adjust the definition of a rewrite rule: instead
of a function that maps from a subterm to an equivalent subterm, we define a
rewrite rule to be a function that maps from a subterm to a set of subterms.

A single rule is now sufficient to represent the whole rule database. This
single rule is a one-to-many mapping from a subterm to the set of rewrites of
that subterm. This representation is natural while applying the rules, but it is not
a natural way to write them. It is, however, trivial to automate the combination
of a set of partial functions into the single function used by the implementation.

For example we can combine rule1, rule2 and rule3 in allRules as follows:

Subterms: {A,B,C,D}

rule1: A to B

rule2: A to C

rule3: B to D

allRules

{ (A, {B,C})
, (B, { D })
, (C, { C })
, (D, { D }) }

Here rule1, rule2, and rule3 are
partial functions. However, the com-
bined allRules is a total function,
mapping from a subterm to a set of
subterms. rule1 rewrites A into B,
rule2 rewrites A into C and rule3
rewrites B into D. No rule matches C
or D, so they are each mapped to a
singleton set containing themselves.

Henceforth, we will present our rules as partial functions mapping from sin-
gle subterms to single subterms. As above, these rules are then automatically
combined into a single rule from subterms to sets of subterms.

Fig. 2 presents the elements of a rule: the mapping denoted by the ; op-
erator; the guards that the left hand side of the mapping must satisfy; and the
declarations used to construct the right hand side of the mapping. Any expres-
sion that matches the left hand side of the ; symbol is replaced by the right
hand side, if all guards are satisfied.

In presenting rewrite rules we adopt the following convention, which is im-
portant to remember throughout reading this paper. Whenever a rule uses a
guard to restrict the type of a meta-variable on the left-hand-side of ; that
meta-variable is only allowed to match an atomic expression or an expression
of the form Array[i1, . . . , in] (we employ a lifting mechanism to handle indexed
expressions as if they were just simple atomic expressions). As an example, con-
sider the rule in Fig. 3. Here the meta-variables a and b are each guarded to
match only expressions of type set of τ , where τ is any type. For example, a
and b can match against {1, 2, 3}, a decision variable or parameter whose type
is set of set of int or x[i] where x is a decision variable of type matrix of
set of int. However, a and b cannot match against the expression s1 union
s2.

Fig. 3 shows a rule that matches with a subseteq constraint between two
sets of the same type. It rewrites the constraint into a universal quantification
over the first set, which can be read as every element in set a must also be an
element of set b. It also creates a quantified variable of type τ , which is the type
of the elements of the two sets.

The symbols that we can match on the left-hand-side of a ; are Essence
expression constructors. These symbols can be either data constructors or op-
erators on expressions. Currently implemented data constructors are bool, int,

essence_expression ; equivalent_expression

guards: properties that essence_expression must satisfy

declarations: newly created variables and local aliases for expressions

Fig. 2. Anatomy of a refinement rule

a subseteq b ; forall i : a . i elem b

guards: a ∼ set of τ, b ∼ set of τ

Fig. 3. An example rewrite rule, ruleSetSubsetEq

set, mset, function, relation, tuple. Some of the available operators are the
following: abs, +, -, *, /, %, =, !=, <, >, <=, >=, not, /\, \/, =>, <=>, card, elem,
union, intersect, subset, subseteq, supset, supseteq, max, min, forall,
exists, sum, matrix indexing ([]), tuple indexing (<>), function application,
function inverse application, relation projection.

It is useful to view our rules as operating upon an Abstract Syntax Tree (AST)
representation of an Essence specification. In the AST, every node represents a
term in the specification and is also labelled with that term’s type. The rewriting
system works by traversing the AST and attempting to apply the rules in the
database at every node. A rule is allowed to modify the subtree rooted at the
current node, and, for contextual information, is allowed to access (but not to
modify) the remainder of the AST via the parent of the current node. If a rule
matches the current node, the whole subtree is replaced with the equivalent
subtree the rule suggests.

4.1 Example Rules

In this section we will present a number of example rules relating to the re-
finement of set variables. These will demonstrate rules showing how expressions
involving sets are rewritten and refined.

We first present a series of rules that demonstrate how expressions involving
sets can be rewritten into expressions involving simpler operators.

a = b ; a subseteq b /\ b subseteq a

guards: a ∼ set of τ, b ∼ set of τ

ruleSetEq: shows a rule that matches with an equality constraint between two
sets. It rewrites the equality into a conjunction of mutual subseteq’s between
the two sets. The guards ensure it only applies to sets.

e elem s ; exists i : s . i = e

guards: e ∼ τ, s ∼ set of τ

ruleSetElem: shows a rule that matches with an elem constraint and rewrites
it into an existential quantification over the set.

forall i : (a union b) . k ; forall i : a . k /\ forall i : b . k

exists i : (a union b) . k ; exists i : a . k \/ exists i : b . k

forall i : (a intersect b) . k ; forall i : a (i elem b => k)

forall i : (a intersect b) . k ; forall i : b (i elem a => k)

exists i : (a intersect b) . k ; exists i : a (i elem b /\ k)

exists i : (a intersect b) . k ; exists i : b (i elem a /\ k)

guards: a ∼ set of τ, b ∼ set of τ

ruleSetQuan: shows a series of rules that handle quantification expressions
on some set expressions. These simple transformations save us from creating
intermediate set variables.

The following series of rules show how, once constraints are reduced into a
simpler set of operators, set variables are refined into lower-level types. Conjure
supports refining more complex expressions directly into constraints on lower-
level types, but we have found this method of refinement reduces our rule set,
without reducing the set of models we can generate.

quan i : s . k ; quan i : r . kk

guards: s ∼ set of τ, size(s) ∼ bound, refinement(s) ∼ explicit

quan ∼ {forall,exists,sum}
declarations: m = matrix indexed by [r] of τ

r = int(1..size(n))

kk = replace (i -> m[i]) k

ruleRefineSetQuan (set size bound, explicit representation):
shows one of the core rewrite rules for handling set refinements. This rule is not
only a simple reformulation of an expression, but it also refines the set into an
explicit representation, using a matrix. refinement is a function that returns
the representation of its parameter. The size function, which returns the size
of its parameter is used here to check if the set is of a fixed size.

forall i : s . k ; forall i : r . kk

guards: s ∼ set of τ, size(s) ∼ not bound, maxsize(s) ∼ bound

refinement(s) ∼ explicit

declarations: m = matrix indexed by [r] of tuple<τ,bool>
r = int(1..maxsize(n))

kk = (m[i]<1> = true) => replace (i -> m[i]<0>) k

exists i : s . k ; exists i : r . kk

guards: s ∼ set of τ, size(s) ∼ not bound, maxsize(s) ∼ bound

refinement(s) ∼ explicit

declarations: m = matrix indexed by [r] of tuple<τ,bool>
r = int(1..maxsize(n))

kk = (m[i]<1> = true) /\ replace (i -> m[i]<0>) k

sum i : s . k ; sum i : r . kk

guards: s ∼ set of tau, size(s) ∼ not bound, maxsize(s) ∼ bound

refinement(s) ∼ explicit

declarations: m = matrix indexed by [r] of tuple<τ,bool>
r = int(1..maxsize(n))

kk = m[i]<1> * replace (i -> m[i]<0>) k

ruleRefineSetQuan (set size not bound, explicit representation):
shows some extensions to the rule ruleRefineSetQuan. These rules handle cases
where there is a quantified expression over a set whose size is not known in ad-
vance. An explicit representation of a set with unknown size requires introducing
a matrix of tuples, where in each tuple the first component is in the set if the
second component is true. For this representation we need different rules for each
quantifier. maxsize is similar function to size.

forall i : s . k ; forall i : r . kk

guards: s ∼ set of int, refinement(s) ∼ occurrence

declarations: m = matrix indexed by [dom] of bool

dom = domain(tau(s))

kk = (m[i] = true) => k

exists i : s . k ; exists i : r . kk

guards: s ∼ set of int, refinement(s) ∼ occurrence

declarations: m = matrix indexed by [dom] of bool

dom = domain(tau(s))

kk = (m[i] = true) /\ k

sum i : s . k ; sum i : r . kk

guards: s ∼ set of int, refinement(s) ∼ occurrence

declarations: m = matrix indexed by [dom] of bool

dom = domain(tau(s))

kk = (m[i] = true) * k

ruleRefineSetQuan (occurrence representation) : shows the final part of
ruleRefineSetQuan. These rules handle cases where the set is to be represented
in occurrence representation, where a ith element of a matrix is true if i is in
the set. domain is a function which returns the domain of its parameter. tau is
a function which returns the type of element a container type contains.

5 Matching Expressions not Constraints

The prototype implementation discussed in [4] operated by matching against
and rewriting complete constraints after flattening all expressions by introduc-
ing auxiliary variables and further constraints. However, such an approach has a
number of drawbacks. It may not be scalable in general as we may possibly have
a huge number of constraint types that look very similar but slightly different
(such as: x subseteq (a union b) and x supseteq (a union b)). Further-
more, a large number of rewrite rules may be needed, one for each constraint
type. Finally, the flattening process may introduce a large number of unneces-
sary auxiliary variables and changes the structure of our constraints for which
we may have better rewrite rules that exploit that structure.

In this paper, we overcome these drawbacks by allowing our rules to match
and rewrite expressions within a constraint rather than (necessarily) the whole
constraint. This allows us to accomplish three things. First, we can refine a
greater proportion of the Essence language using fewer rules. Second, un-
like the prototype, we no longer need to flatten a specification prior to refine-
ment avoiding introducing unnecessary auxiliary variables. Finally, we may have
optimised rewrite rules for specific structured constraints. For instance, con-
sider the constraint (a union b) subseteq c , if we flatten it, we would have
x subseteq c /\ x = a union b which introduces an auxiliary variable and
requires refining unnecessarily a set equality constraint. In our approach, in ad-
dition to this refinement, we may rewrite this into a conjunction of two subseteq
constraints, namely a subseteq c /\ b subseteq c, by having a dedicated
rewrite rule which reasons about the structure of this constraint type.

There is a subtle problem arising when we match an expression fragment
and rewrite it to an equivalent expression fragment. The rewrite might introduce
extra constraints and auxiliary variables.

For instance, consider the following Essence specification:

given lb,ub,n,m,k : int

find t : set (size n) of int(lb..ub)

find A : set (size n) set (size m) of int(lb..ub)

such that

forall s : A . (max(s) - max(t) = k) => (k elem s)

The rewrite rule for the set max operator (max(s)) needs to introduce an
auxiliary variable, say max_s, along with constraints that enforce that max_s is
the maximum element in set s. We refer to these extra constraints as helper
constraints.

We equip our rewrite rules with an extra operator “@” which attaches a
“bubble” to any expression containing the helper constraints. For example, our
rewrite rule for the set max operator is as follows:

max(s) ; max_s @ bubble

guards: s ∼ set of int

declarations: max_s = int

bubble = (max_s elem s) /\ (forall i : s . i >= max_s)

If we apply our rule of the above example which contains two set max oper-
ator, we end up with the following resulting expression:

forall s: A . ((max_s@bubble_s) - max(t) = k) => (k elem s)

forall s: A . ((max_s@bubble_s) - (max_t@bubble_t) = k) => (k elem s)

As we can see, the intermediate expression is not a valid one yet. In fact, we
need to move the bubbles to their correct positions. To achieve this, we introduce
a rule which we call “ruleBubbleUp” which moves the bubbles one level up
each time. This rule does not apply to universally or existentially quantified
expressions. We will show later how we handle these cases.

For each applicable expression exp, the ruleBubbleUp rule goes through each
child of that expression and if that child has a bubble attached to it, it moves the
bubble one level up and attaches it to expression exp. If there is more than one
child with a bubble, we attach them in the form of a conjunction to expression
exp.

Without loss of generality and for the sake of simplicity, we give the definition
of the ruleBubbleUp assuming that the expression has only child. In our current
system, we handle expressions with any number of children.

exp ; exp’ @ b

guards: exp is not a quantified expression, child(exp) ∼ (a @ b)

declarations: exp’ = replace (a @ b) in exp with a

In our running example, these are the results of successively applying the
ruleBubbleUp rule:

forall s: A . (((max_s-max_t) @ (bubble_s /\ bubble_t))=k) => (k elem s)

forall s: A . (((max_s-max_t=k) @ (bubble_s /\ bubble_t))) => (k elem s)

forall s: A . (((max_s-max_t=k) => (k elem s)) @ (bubble_s /\ bubble_t))

After finding the right positions for the bubbles, our next step safely converts
“@” to conjunction “/\” resulting in the following valid expression:

forall s: A . (((max_s-max_t=k) => (k elem s)) /\ bubble_s /\ bubble_t)

Our optional last step is to resolve the scope for the bubble expressions inside
a universally quantified expression. ruleLoopInvariant, defined below, moves
all expressions inside a universally quantified expression that do not fall in the
scope of their quantifier. The rule is defined as follows:

forall i :s . k ; invariants /\ forall i : s . variants

declarations: ks = splitConjuction k

variants = filter (hasReferenceTo i) ks

invariants = ks \\ variants

Given a conjunction of constraints, the splitConjuction function returns
a list of constraints breaking the conjunctions between them and the function
hasReferenceTo checks whether the second expression references the first one
or not. Thus, our final refinement is as follows:

bubble_t /\ forall s: A . (((max_s-max_t=k) => (k elem s)) /\ bubble_s)

6 Coverage of Essence and Limitations

The Essence language as defined in [4] contains five core type constructors: set,
multi-set, partition, tuple, function and relation; and the simple types
int, bool and user-defined enumerated and unnamed types. Currently our sys-
tem has rules for handling specifications on all the type constructors, excepting
partition. There are 22 operators on these type constructors defined in [4]. We
support almost all of them. The currently missing operators are mostly related
to type-conversion and we are confident that they will be easy to implement
without changes to our current system. Since partitions can be realised as sets
of sets with additional constraints, we are confident that we can support these
in the near future.

We do not implement enumerated types and unnamed types yet. The initial
focus of the implementation was attacking the challenging parts of Essence like
the nested types, rather than providing a finished product. Since enumerated
types and unnamed types can be easily transformed into int by a preprocessing
step, we postpone the implementation of them.

not (a) ; a = false

guards: a ∼ bool

ruleNot: This rule removes negated expressions.

alldiff(m) ; forall i : r . (forall j : r . (i < j) => m[i] != m[j])

guards: tau(m) 6∼ {bool,int}
declarations: r = firstIndexOfMatrix m

ruleComplexAlldiff: We provide a generic implementation of alldiff which
rewrites the constraint into a clique of not equal constraints, for use with types
without a global alldiff constraint.

a != b ; not (a = b) a supset b ; b subset a

a supseteq b ; b subseteq a a subset b ; a subseteq b /\ a != b

guards: a ∼ set of τ, b ∼ set of τ

ruleSetOps: Shows a selection of the rules which handle normalising set ex-
pressions. This reduces the number of other rules which are required.

min(s) ; min_s @ cons

guards: s ∼ set of int

declarations: min_s = int

cons = (min_s elem s) / (forall i : s . i >= min_s)

ruleSetMin: Rewrites a min operator applied to a set variable. cons constrains
the newly introduced variable, min s. ruleSetMax is defined similarly.

card(s) ; size(s)

guards: s ∼ set of τ, size(s) ∼ bound

card(s) ; card_s @ (card_s = sum i : dom . m[i])

guards: s ∼ set of τ, size(s) 6∼ bound, maxsize(s) ∼ bound

representation(s) ∼ occurrence

declarations: card_s = int

m = matrix indexed by [dom] of bool

dom = domain(tau(s))

card(s) ; card_s @ (card_s = sum i : dom . m[i]<1>)

guards: s ∼ set of τ, size(s) 6∼ bound, maxsize(s) ∼ bound

representation(s) ∼ explicit

declarations: card_s = int

m = matrix indexed by [r] of tuple<τ,bool>
r = int(1..maxsize(n))

ruleSetCard: Rewrites a card operator applied to a set variable. Is optimised
for varibles of known size, else it creates a variable to represent the cardinality
of the operand set. There are variants for two representations of a set.

f(i) ; m[i]

guards: f ∼ function τ1 -> τ2, i ∼ τ1

representation(f) ∼ Func1D

declarations: m = matrix indexed by [dom(τ1)] of τ2

f(i) ; sum j : r . j × m[i,j]

guards: f ∼ function τ1 -> τ2, i ∼ τ1

representation(f) ∼ Func2D

declarations: m = matrix indexed by [dom(τ1),dom(τ2)] of bool

ruleFuncApp: Refines function application. for two different representations of
functions

defined(f) ; defn_f

guards: f ∼ function τ1 -> τ2, isTotal(f) ∼ true

declarations: defn_f = set of τ1

defined(f) ; defn_f @ bubbl

guards: f ∼ function τ1 -> τ2, representation(f) ∼ Func2D

isPartial(f) ∼ true

declarations: defn_f = set of τ1

m = matrix indexed by [dom(τ1),dom(τ2)] of bool

bubbl = forall i : dom(τ2) .

((sum j : dom(τ1) . m[j,i]) > 0)

=> i elem defn_f

ruleFuncDefined: Refines the defined operator applied to a function variable.
Simply returns the domain set of the function, if the function is declared to be
total, else it creates a set variable and constraints it.

range(f) ; range_f

guards: f ∼ function τ1 -> τ2, isSurjective(f) ∼ true

declarations: range_f = set of τ2

range(f) ; range_f @ bubbl

guards: f ∼ function τ1 -> τ2, representation(f) ∼ Func2D

isSurjective(f) 6∼ true

declarations: range_f = set of τ2

m = matrix indexed by [dom(τ1),dom(τ2)] of bool

bubbl = forall i : dom(τ1) .

((sum j : dom(τ2) . m[i,j]) > 0)

=> i elem range_f

ruleFuncRange: Refines the range operator applied to a function variable. This
rule is similar to ruleFuncDefined.

m[i]<j> ; n<j>[i]

guards: m ∼ matrix indexed by [indices] of tuple<components>

declarations: n = tuple<comps′>

comps′ = ∀ c ∈ components .

matrix indexed by [indices] of typeof(c)

ruleMatrixOfTuples: Essence supports matrices of tuples, however the target
language does not. This rule rewrites a matrix of tuples into a tuple of matrices,
preserving the matrix indexing and the tuple indexing.

t<i> ; tt

guards: t ∼ tuple<components>, i ∼ integer expression

length(components) >= i

declarations: tt = typeof(components[i])

ruleTupleOut: Rewrites an indexed tuple into a separate decision variable.

a = b ; forall i : r . a<i> = b<i>

guards: a ∼ tuple<components1>, b ∼ tuple<components2>

length(components1) = length(components2)

declarations: r = int(0..length(components1)-1)

ruleTupleEq: Rewrites tuple equality as equalities on the members of the tuple.

r<is> ; is elem s

guards: r ∼ relation of components1, is ∼ tuple<components2>

length(components1) = length(components2)

is contains no underscores

declarations: s = set of tuple<components1>

ruleReElem: Relation membership, representing the relation as a set of tuples.

r<is> ; k<js> @ bubbl

guards: r ∼ relation of components1, is ∼ tuple<components2>

length(components1) = length(components2)

is contains at least one underscore

declarations: js = underscoredIndices(is)

k = relation of js

bubbl = forall i : r .

(notUnderscoredIndices(is) match with i) =>

(underscoredIndices(i) elem k)

ruleRelnProj: Rewrites the relation projection expressions. In a relation pro-
jection expression, at least one of the tuple indices (is) should be left unspecified.
This operator creates a new relation containing only those components of the
actual relation which are left unspecified.

The only part of Essence where we do not yet support full nesting is function
variables that map from arbitrarily nested combinatorial objects to any type.
We support only function variables that map from sets of integers to arbitrarily
nested types. This is an important area of future work.

find f : function (partial) int(lb..ub) -> τ
find g : function (partial) set (maxsize n) of int(lb..ub) -> τ

For example, we can refine f to either a 1-dimensional matrix of decision
variables of type τ , or a 2-dimensional matrix of boolean decision variables,
depending on the actual type of τ . However we cannot refine g to a matrix in
the same way because we cannot index a matrix with complex types.

The power of our system directly depends on the quality of our rules database.
So far we have concentrated on achieving coverage of the Essence language,
rather than producing good models. A further future goal is to increase both the
quantity and breadth of our rules in order to generate the widest possible set of
models from a specification, in preparation for then selecting the best model or
models from the set of models we produce.

7 Implementation

Essence, like Zinc, is a domain-specific language (DSL) for writing abstract con-
straint specifications. Similarly, languages such as EaCL[13], ESRA[3], OPL[20],
Essence′ [17] and MiniZinc[15] are DSLs for writing constraint models. This is

in contrast with constraint solvers such as Ilog Solver[8] and Gecode[19], which
are implemented as a library in a programming language such as C++.

There are two standard methods for implementing DSLs. The first is to write
a full parser and type checker for the language and map the language to an
internal data structure that can be processed and executed. A second, simpler
method is by extending an existing programming language. The DSL language
is then called an embedded-DSL (EDSL).

We choose a hybrid approach. We implement the language as an EDSL to
Haskell to leverage its power, yet we still implement a complete parser and a type
checker that can read conventional Essence specifications in. This may sound
like duplicating some work, however, we make use of the EDSL while writing
our rewrite rules. Using the EDSL for rewrite rules saves us a great deal of effort
which would otherwise mean re-implementing features of the host language.

Some languages, like Haskell, are particularly suited to this task, and can be
used to implement concise EDSLs that are easy to use. Haskell is a statically
typed higher-order pure functional programming language. It provides a module
system, an advanced type system with type classes and polymorphic types. It is
particularly powerful in manipulating data structures using its powerful pattern
matching infrastructure. These features make it a natural candidate for hosting
EDSLs. There are EDSLs in Haskell for many fields including but not limited to
3D animations, image synthesis and production, and geometric region analysis.
The hmatrix-gplk package 1 provides an EDSL for Linear Programming, as
well as a solver.

Rhiger [18] provides further examples of EDSLs in Haskell, and describes the
common techniques used to design them.

Building on top of Haskell gives us the ability to leverage Haskell’s rich
type system and grow from existing types and operations. As discussed in [5],
Essence itself is specified as a sequence of abstract lexemes. Our choice of con-
crete lexemes was made to suit the host language. The mapping to the abstract
lexemes of the Essence language definition is straightforward.

8 Conclusion

This paper has presented a new version of the Conjure automated modelling
system, which achieves far greater coverage of the Essence language than pre-
vious versions. There remain a small number of areas of the Essence language
that we need to extend the system to cover, such as partition variables and func-
tion variables that map from arbitrarily nested types. This forms an immediate
piece of future work. Further future work includes increasing the quantity and
breadth of our refinement rules and beginning to select among the set of models
produced.
Acknowledgements Ozgur Akgun is supported by a SICSA prize studentship.
This research is supported by UK EPSRC grant no EP/H004092/1.

1 http://hackage.haskell.org/package/hmatrix-glpk

References

1. Christian Bessiere, Remi Coletta, Frederic Koriche, and Barry O’ Sullivan. Ac-
quiring constraint networks using a SAT-based version space algorithm. In 21st
National Conference on AI (AAAI), pages 1565–1568, 2006.

2. John Charnley, Simon Colton, and Ian Miguel. Automatic generation of implied
constraints. In Proceeding of the 2006 conference on ECAI 2006, pages 73–77,
Amsterdam, The Netherlands, The Netherlands, 2006. IOS Press.

3. Pierre Flener, Justin Pearson, and Magnus Ågren. Introducing esra, a relational
language for modelling combinatorial problems. In Maurice Bruynooghe, editor,
LOPSTR, volume 3018 of Lecture Notes in Computer Science, pages 214–232.
Springer, 2003.

4. A. M. Frisch, C. Jefferson, B. Martinez Hernandez, and I. Miguel. The rules of
constraint modelling. In Proceedings of the 19th International Joint Conference on
Artificial Intelligence, pages 109–116, 2005.

5. Alan M. Frisch, Warwick Harvey, Chris Jefferson, Bernadette Mart́ınez-Hernández,
and Ian Miguel. Essence: A constraint language for specifying combinatorial prob-
lems. Constraints 13(3), pages 268–306, 2008.

6. Warwick Harvey. Symmetry breaking and the social golfer problem. In Proceedings
SymCon-01: Symmetry in Constraints, co-located with CP 2001, pages 9–16, 2001.

7. Brahim Hnich. Thesis: Function variables for constraint programming. AI Com-
mun, 16(2):131–132, 2003.

8. ILOG Solver 6.3 User Manual. ILOG, S.A., Gentilly, France, July 2006.
9. Christopher Jefferson. Thesis: Representations in Constraint Programming. PhD

thesis, University of York, 2007.
10. James Little, Cormac Gebruers, Derek G. Bridge, and Eugene C. Freuder. Using

case-based reasoning to write constraint programs. In CP, page 983, 2003.
11. Kim Marriott, Nicholas Nethercote, Reza Rafeh, Peter J. Stuckey, Maria Garcia

de la Banda, and Mark Wallace. The design of the zinc modelling language. Con-
straints 13(3), 2008.

12. Bernadette Mart́ınez-Hernández. Thesis: The Systematic Generation of Channelled
Models in Constraint Satisfaction. PhD thesis, University of York, 2008.

13. P. Mills, E.P.K. Tsang, R. Williams, J. Ford, and J. Borrett. EaCL 1.5: An easy ab-
stract constraint optimisation programming language. Technical report, University
of Essex, Colchester, UK, December 1999.

14. N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Computer Science,
chapter Rewrite Systems. North-Holland, 1990.

15. N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and G. Tack.
Minizinc: Towards a standard cp modelling language. In Proceedings of the 13th
International Conference on Principles and Practice of Constraint Programming,
pages 529–543, 2007.

16. Jean-Francois Puget. Constraint programming next challenge: Simplicity of use.
In Principles and Practice of Constraint Programming - CP 2004, pages 5–8, 2004.

17. Andrea Rendl. Thesis: Effective Compilation of Constraint Models. PhD thesis,
University of St. Andrews, 2010.

18. Morten Rhiger. A foundation for embedded languages. ACM Transactions on
Programming Languages and Systems, 25(3):291–315, May 2003.

19. Gecode Team. Gecode: Generic constraint development environment, 2006. Avail-
able from http://www.gecode.org.

20. Pascal Van Hentenryck. The OPL Optimization Programming Language. MIT
Press, Cambridge, MA, USA, 1999.

